
Гальванотехника: единичное зародышеобразование, снятое на камеру
От Дмитрий Зарекин, в Новости гальванотехники,
Гальванопокрытие или электроосаждение - один из самых важных в химии процессов, при котором катион металла в растворе может разряжаться до элементарной формы за счёт навязывания электроду электрического потенциала.
Это позволяет изготавливать электрические контакты в интегральных схемах с нанометрической точностью.
Несмотря на десятилетия исследований во всем мире, визуализация начальных этапов электроосаждения - формирование первого зародыша остается серьезной проблемой.
При совместной работа с участием Школ химии, физики Бристольского университета и Бристольского Центра Функциональных Наноматериалов был достигнут совершенно новый подход к мониторингу процесса, приводящего к зародышеобразованию в реальном времени.
Согласно публикации в журнале Nature Communication группа излагает, как выявляя очень малые локальные пертурбации структуры воды вблизи поверхности, можно отслеживать сложную динамику ранних стадий электроосаждения.
Дэвид Фермин, профессор электрохимии и ведущий автор работы, сказал: “Это очень захватывающее развитие, которое подталкивает границы пространственно-временного разрешения электрохимических процессов.
Существуют весьма утончённые методы, которые позволяют контролировать явление на атомном уровне, но нарушают динамику процесса, в то время как другие методы могут отслеживать очень быструю динамику, но мы не можем «видеть», где процессы происходят в пространстве.”
Используя латеральную молекулярную силовую микроскопию, разработанную командой профессора Мервина Майлса в Школе физики, группа смогла обнаружить образование зародыша металла, отслеживая пертурбации вязкоупругих свойств гидратационных слоев с нанометрическим разрешением.
Этот микроскоп работает, обнаруживая небольшие изменения в колебании очень острого наконечника в результате силы, обусловленной только действием водных слоёв.
Интересный аспект этого подхода заключается в том, что мы можем обнаруживать едва различимые изменения в структуре воды в реальном времени.
По словам профессора Фермина, это просто пример (и очень амбициозный) новой науки о том, что этот уникальный микроскоп может успешно применяться в таких областях, как электрохимия гетерогенных процессов и катализ для энергетики.
Исследование спонсировалось EPSRC и Бристольским Центром Функциональных Наноматериалов.
источник University of BRISTOL США 17/10/2017
- Подробнее...
- 0 комментариев
- 1 850 просмотров